� TOC \o "1-4" \p " " �Introduction � GOTOBUTTON _Toc409962868 � PAGEREF _Toc409962868 �2��

Database Is Difficult � GOTOBUTTON _Toc409962869 � PAGEREF _Toc409962869 �2��

A Small Paradigm Shift � GOTOBUTTON _Toc409962870 � PAGEREF _Toc409962870 �2��

Assumptions about Users � GOTOBUTTON _Toc409962871 � PAGEREF _Toc409962871 �2��

A Fresh Approach � GOTOBUTTON _Toc409962872 � PAGEREF _Toc409962872 �3��

Knowledgeable � GOTOBUTTON _Toc409962873 � PAGEREF _Toc409962873 �3��

Articulate � GOTOBUTTON _Toc409962874 � PAGEREF _Toc409962874 �3��

Responsible � GOTOBUTTON _Toc409962875 � PAGEREF _Toc409962875 �3��

The EUREKA Method � GOTOBUTTON _Toc409962876 � PAGEREF _Toc409962876 �4��

What the Method Will Deliver � GOTOBUTTON _Toc409962877 � PAGEREF _Toc409962877 �4��

The Right Tables � GOTOBUTTON _Toc409962878 � PAGEREF _Toc409962878 �4��

The Right PK for Each Table � GOTOBUTTON _Toc409962879 � PAGEREF _Toc409962879 �5��

Referential Integrity Guaranteed � GOTOBUTTON _Toc409962880 � PAGEREF _Toc409962880 �5��

Interviewing the User � GOTOBUTTON _Toc409962881 � PAGEREF _Toc409962881 �5��

Getting the User Involved � GOTOBUTTON _Toc409962882 � PAGEREF _Toc409962882 �5��

Getting a Scope and Goals Statement � GOTOBUTTON _Toc409962883 � PAGEREF _Toc409962883 �5��

Suppress Your Own Preconceived Ideas � GOTOBUTTON _Toc409962884 � PAGEREF _Toc409962884 �5��

Concentrate on the Data, NOT the Processes � GOTOBUTTON _Toc409962885 � PAGEREF _Toc409962885 �5��

Draw the ER Diagram � GOTOBUTTON _Toc409962886 � PAGEREF _Toc409962886 �6��

Identify the Entities � GOTOBUTTON _Toc409962887 � PAGEREF _Toc409962887 �6��

Identify Relationships between the Entities � GOTOBUTTON _Toc409962888 � PAGEREF _Toc409962888 �6��

Eliminate Redundant Relationships � GOTOBUTTON _Toc409962889 � PAGEREF _Toc409962889 �7��

Transform N:N Relationships into 1:N � GOTOBUTTON _Toc409962890 � PAGEREF _Toc409962890 �7��

Make a Preliminary List of Attributes � GOTOBUTTON _Toc409962891 � PAGEREF _Toc409962891 �8��

Redraw the Diagram � GOTOBUTTON _Toc409962892 � PAGEREF _Toc409962892 �8��

Read the Diagram Back to the User � GOTOBUTTON _Toc409962893 � PAGEREF _Toc409962893 �8��

Determine the Entity Type of Each Box � GOTOBUTTON _Toc409962894 � PAGEREF _Toc409962894 �8��

Independent � GOTOBUTTON _Toc409962895 � PAGEREF _Toc409962895 �8��

Subordinate � GOTOBUTTON _Toc409962896 � PAGEREF _Toc409962896 �8��

Combination � GOTOBUTTON _Toc409962897 � PAGEREF _Toc409962897 �9��

Permutation � GOTOBUTTON _Toc409962898 � PAGEREF _Toc409962898 �9��

Derive the Correct PK According to the Entity Type � GOTOBUTTON _Toc409962899 � PAGEREF _Toc409962899 �9��

Independent � GOTOBUTTON _Toc409962900 � PAGEREF _Toc409962900 �9��

Subordinate � GOTOBUTTON _Toc409962901 � PAGEREF _Toc409962901 �9��

Combination � GOTOBUTTON _Toc409962902 � PAGEREF _Toc409962902 �9��

Permutation � GOTOBUTTON _Toc409962903 � PAGEREF _Toc409962903 �10��

Note � GOTOBUTTON _Toc409962904 � PAGEREF _Toc409962904 �10��

Add All Non-key Attributes to Each Table � GOTOBUTTON _Toc409962905 � PAGEREF _Toc409962905 �10��

Drawing The Diagram in Access � GOTOBUTTON _Toc409962906 � PAGEREF _Toc409962906 �10��

A Worked Example � GOTOBUTTON _Toc409962907 � PAGEREF _Toc409962907 �10��

�Introduction

Even if you are an experienced database designer, you are likely to find fresh material herein, particularly with regard to "entity typing." However, this has been written with the beginner in mind; the intention is to empower more developers in the techniques of sound relational database design and fast prototyping.

This section is based on the assumption that you are developing applications for someone else - your "user" or "client". The same ideas apply when you develop an application for your own use: in fact it is a good idea to distinguish between your "user mode" and "developer mode" in this case. As your own user, it will still be worth your while to take the time to write a formal specification, starting with a scope and goals statement, before you rush into building the application.

Database Is Difficult

Database is the Cinderella of the three major workstation applications. The two ugly sisters are of course Word Processing and Spreadsheet!

We believe there are three main reasons why "Database is Difficult":

There is no pre-computer model for relational databases,

Database design is not intuitive, and

There is a scarcity of good resources to help us do it right.

The reason developers spend too little time on database design is that they don't have effective design tools.

When we have resources available to help us learn how to model databases effectively, and which allow us to explore alternative designs for any given application, we are well able to overcome the first two difficulties. That is what MiA tries to do.

A Small Paradigm Shift

Using a tool like MiA effectively may require that you make a slight change in your readiness to "cut code." To state that more strongly, it actually requires that you suppress your ego as far as its desire to stamp your personality on the applications you develop, by hand-coding every line of the application. Actually, most developers build up a library of more-or-less reusable "objects" from which they draw (and which they refine and expand) for each new project. MiA takes over the responsiblity for a large part of the ground these "private libraries" normally cover. In return, it provides an application environment which is hopefully at least as functionally rich and robust, and which stays unobtrusively out of the developer's way.

But more important, because of its basis in sound relational design, it allows you, the developer, to put up working prototypes as fast as you can get the user to define his requirements.

Assumptions about Users

Traditional systems analysis and design seems to have been based on the assumption that users are illiterate, cannot contribute materially, and in any case are far too busy to be bothered. Elaborate procedures are installed to intimidate the user. Heaven help him if he should have an idea or, even worse, change his mind, after the requirements specification has been "finalised."

Seen from the intended user's point of view, systems development is something done in a back room somewhere, and takes anything from 6 months to 3 years. If the business still requires the system at all by the time it is delivered, the most painful phase only starts at that point . . .

"The first time the @$#%*! user thinks about what he wants is when we deliver the system."

Again, from the user's perspective, that's the first time he CAN give any feedback - it's the first time we've asked!

A Fresh Approach

What if we build the system first, and then ask the user to help us get it right?

One of the most compelling reasons for doing it this way is that systems development is always a victim of Heisenberg's Principle of Uncertainty. Paraphrased, this assures us that the act of building a computer system changes the requirements of that system.

In practice, users are universally knowledgeable, articulate and responsible. Putting that another way, you should ensure that the user qualifies on these grounds before accepting the commission - they are necessary pre-conditions for a successful project.

But users are also human, and thus, unlike system developers, fallible. We must allow them to change their minds occasionally. Actually, when they see what the system can do for them, and start to get the hang of the peculiar way it does things, they inevitably have new ideas as to what they "need" it to do.

Building the system first and getting them to use it so as to knock it into the right shape is a much more human approach. And providing that we don't have to do too much rewriting by hand (there isn't time for this anyway, at six months per go), why should we care how different the finished system is from what we thought it was going to be at the start? As long as we can measure and control the project, we can keep the user constantly advised of the time and money implications of proposed "improvements."

"Users like to be given choices, and�don't like to be given surprises."

Knowledgeable

There is no way that you, as a system developer, can understand the problem domain as well as the people doing the job. You have to have an effective way of getting the people (or person) with that knowledge to impart it to you.

Articulate

Make sure that your user can express his needs adequately. Sometimes it is necessary to make extraordinary efforts to get the user away from his telephone, secretary, and 300 crises. But make the effort he must, else he is not going to get the system he says he needs.

Responsible

It is highly likely that the person who approaches you for a system is able to authorise it. But make sure of this before spending a lot of effort on some junior clerk's pipe-dream.

Remember that asking us to build a system is probably the last desperate act of a frustrated senior manager - they don't lightly submit to the awful stress of a new computer system!

In practice, we have found that treating the user as an intelligent human being with an important role to play in the development process has paid handsome dividends - we're actually getting them to do most of the work, but they are still paying us.

All we need now is some way to build the system before we worry about what it must do.

The EUREKA Method

The EUREKA method is an iterative system development methodology, based on the use of simple Entity-Relationship (ER) diagrams as the principal communication vehicle, and CASE principles to build rapid prototypes and evolve these into live applications. It is independent of database, programming language and user interface. EUREKA stands for End-Users, Relationships, Entities, Keys and Attributes, these being the concepts that the method focuses on.

In this incarnation, we shall be using Access and MiA to build the application for us, as soon as we have a first-cut database design, and thereafter as often as we wish, as this design evolves towards the "live" application. For the moment however, let's concentrate on the design methodology.

We start by qualifying the participating users, to ensure that we have a do-able project. We conduct highly-focused interviews which concentrate almost exclusively on the data needed by the system/user. Well, we concentrate on the data, but asking the user to do so is neither necessary nor desirable. We draw the ER diagram as the entities and relationships are identified, and "read" this back to the user to confirm our understanding of his requirements.

This rule-based methodology is founded on a rigorous treatment of key field domains, but includes the mechanisms to derive these automatically, as well as all other critical design elements of the application.

We use the completed ER diagram to determine the correct Primary Keys (PKs) for each table. Since the diagramming technique produces a database in 3rd Normal Form (3NF), each of the remaining attributes is simply assigned to the appropriate box on the diagram. And if you haven't heard of 3NF before, don't worry.

At this point, we have a complete data dictionary, which we can key into Access. Once we have defined the Tables and assigned a PK for each table, we use Edit Relationships in Access to reproduce the ER diagram, which is all that MiA needs to be able to build the application. The more attention we give this stage, the less work we have to do for the remainder of the project.

Without writing a line of code, we put up a working prototype which the user can query, browse, and enter live data into.

"There is nothing so powerful as a working system�for ironing out the bugs."

What the Method Will Deliver

The Right Tables

Normalisation is a text-book exercise. Starting with an existing database, it shows how to bend it into shape. But we are starting from scratch. By drawing the ER diagram to satisfy the requirements as they are stated, the database is guaranteed to be in 3NF at all times. As changes are made, the method ensures that 3NF is maintained.

The Right PK for Each Table

The trickiest item for the developer is to identify the right field or combination of fields to use as the PK of each table. Customers are identified by Customer Code, but what is the correct PK for Customer Order Item? Why? The method indicates the correct PKs by first identifying the "entity type" of each box on the diagram as one of four types. The PK formation rule for each type is then applied mechanically.

Referential Integrity Guaranteed

Because the database has been formally derived from the ER diagram, the necessary links are in place to define the correct referential integrity constraints using the Edit Relationships dialog.

Now let's go through the method in more detail.

Interviewing the User

Getting the User Involved

The most effective start to a system development project, we find, is to book a morning or an afternoon for an initial brainstorming session between the developer(s) (one or two only) and the user(s) (maximum of three).

The first order of business is to qualify the user, and we are already doing this by asking him for a whole morning or afternoon. If he can't make this time, when and how are we going to get anything at all from him?

Getting a Scope and Goals Statement

The first thing we do in this session is to ask for a crisp (one or two sentence) Scope and Goals Statement. Again, we are qualifying the user up front, making sure that the project stands a chance of success. How?

Does the client have a clear idea of what he wants? Do the scope and goals match? Can the goals be met by the data and processing requirements stated as the scope to be covered?

Suppress Your Own Preconceived Ideas

This does not mean you must forget all you know, but it does mean that you must not assume anything. Just because you have done ten of these systems before (same old application, huh?) does not mean that you can skip the boring bits . . . At the very least, tell the user what you have in mind very clearly, and give him a chance to tell you how his requirements differ. After all, he has come to you for a custom system - if his requirements were the same as everyone else's, he would have bought the package.

Better yet, try and get the user to tell you what he wants - only put words into his mouth if he is obviously struggling, and you have something concrete to offer.

Most important of all, LISTEN.

Concentrate on the Data, NOT the Processes

If asked what you do on Sunday afternoons in the summer, you may well reply "I mow the lawn." Do not insist that the user avoid describing processes (as in "I have this lawn, you see, and I also have this lawn-mower . . .") but you concentrate on the data (objects, if you like) in the system requirements description. Pick out the entities, asking the user to elaborate if necessary when he describes a process without adequately identifying the data it is applied to - "What do you use to mow the lawn?" You never know, it might be a Bonsai lawn which is mowed with nail clippers.

Draw the ER Diagram

Our ER diagrams only have two components - boxes and arrows.

�

Figure 1 - Components of ER Diagrams

The boxes represent entities, or tables. The arrows represent the relationships that exist between the tables. Although very simple to draw and understand, these ER diagrams are very powerful. We derive the COMPLETE application from the diagram. By following simple rules in a straightforward sequence, we guarantee the right system every time. Putting that another way, given that the requirements are stated "correctly," we guarantee to build the best database to meet those requirements. As the requirements change, so does the database.

We can start drawing the diagram as soon as we have established the scope and goals.

Identify the Entities

Each noun in the scope and goals statement is eligible to become an entity. Basically, nouns are drawn as boxes (which stand for entities) and are later implemented as tables in the working application.

The nouns can be physical entities, such as Customer, Product, or Machine. Or they can be documents, like Invoice or Purchase Order.

Candidate entities can derive from the following sources:

People		Humans who carry out some function, or roles played by them

Locations	Physical locations, offices or sites important to the application

Things		Physical objects, or groups of objects, that are tangible

Organisations Formally organised collections of people, resources, facilities, and capabilities having a defined mission, whose existence is largely independent of individuals.

Concepts	Principles or ideas not tangible per se; used to organise or keep track of business activities and/or communications

Events	Things that happen, usually to something else at a given date and time, or as steps in an ordered sequence. Sometimes, historical events which must be recorded. Also interactions, such as loans, meetings and intersections.

Identify Relationships between the Entities

The relationships we are interested in are of the one-to-many (1:N) kind, as in "each Customer places many Orders." Draw the relationships as arrows on the diagram - each arrow connects precisely 2 boxes. Initially, you may identify relationships as any of the four possible types: one-to-one (1:1), one-to-many (1:N), many-to-one (N:1), or many-to-many (N:N). An arrowhead is drawn to indicate the many-end(s) of each relationship. In a finished diagram, we will have eliminated all but the 1:N relationships. Later, you'll see better why we do this.

�

Figure 2 - The Four Possible Relationships

Eliminate Redundant Relationships

There are several reasons why a diagram might have a 1:1 relationship. Where it is for performance or storage-space reasons, we should merge the entities into a single one - there are no performance or space penalties associated with "optional" data in Access.

If the 1:1 implements object inheritance, then the relationship is valid and should remain. Each instance of the entity key should be implemented with a different key field alias.

The many-to-one is a one-to-many seen from the wrong end. No problem.

Transform N:N Relationships into 1:N

That leaves the many-to-many. For example: "Each Order has many Product Items, and each Product appears (hopefully, unless we're building bridges) on many Orders." A many-to-many means that we are missing a box. We have attributes (in this example, quantity ordered) which do not yet have a home.

There is a standard transformation which replaces the many-to-many by a new box together with one-to-many arrows from each of the boxes involved in the original many-to-many.

�

Figure 3 - Transforming the Many-to-Many Relationship

Make a Preliminary List of Attributes

At the same time as we are drawing the diagram, and reading it back to the user, we also "collect" other attributes for positioning later. In fact, we will use these attributes as one test of the validity of our design - if an attribute hasn't got a home, we're not yet done.

Redraw the Diagram

Once you have got all the entities and relationships worked out, and you have eliminated all but the 1:N (and possibly some 1:1) relationships, it is best to redraw the diagram so that all arrows point downwards, and no arrows cross. This is thought to be always possible, but can sometimes be more trouble than it's worth. The point is to make the whole thing clearer for the human interpreter. The proposed application is encapsulated in this diagram.

Read the Diagram Back to the User

The diagram serves very well as the data requirement specification, since it is bounded and precise in telling what is covered, and what isn't. For each arrow, read as follows:

"For each <one>, there can be many <many>s, but each <many> is associated with one and only one <one>. Is that correct, <title> <user>?"

In that case, please sign here, and here. You can easily count the Function Points from the diagram, if you are familiar with Function Points Analysis.

Determine the Entity Type of Each Box

At this point, you need to concentrate quite hard. Don't let the user go away though, as the questions you need to ask to get the right entity types can only be answered by him. We cannot stress this too highly - you must NOT make these decisions. They are the "highly-focused" part of the whole thing.

Each box/entity has to have a PK which uniquely identifies each record in the table which implements that box/entity. This is the point at which all the other texts on database design move hastily on to another chapter.

There are four entity types:

Independent

Records of an independent entity are not dependent, for identification purposes, on the key values of any other entity. The PK of an independent entity is thus a single, uniquely identifying, key field. An example is Client, identified by Client Code.

Subordinate

The entity is completely subordinate to one above it in the ER diagram. This means that records in this child table cannot exist unless or until the parent record exists in the table above. An example is Invoice Line Item: you cannot have an invoice line for which there is no invoice header record.

A corollary of this is the referential integrity constraint that you must not delete an invoice without deleting all the invoice lines for that invoice at the same time.

Together, independent and subordinate entities can be used to build a hierarchy, or hierarchical database. Entities identified from nouns in the interview process are likely to become independent or subordinate entities.

The second pair of entity types apply to entities usually created as a result of reducing many-to-many relationships. If an entity has two (or more) arrowheads pointing into it (representing the many end of a many-to-many relationship), then it is eligible to be a combination or permutation type of entity, but note that it could still be subordinate or even independent.

Combination

The box is the result of reducing a many-to-many relationship, where it is the validity or existence of a particular combination of one record from each of the tables related in this way, that is of significance, and this must be enforced. For example, if each application can either be installed at a client site or not, but the same combination of client and application must never be duplicated, then Installation is a combination entity.

In heavy technical jargon, the combination entity type implements a 1-wise many-to-many relationship.

Permutation

Like the combination, a permutation entity also represents a many-to-many relationship, but in this case, there can be many records for a given combination of records from the related tables. An example of a permutation entity would be if the applications installed at each customer site are copies of packages. In this case, we would need a separate record for each copy's serial number and version number.

In technical terms, the permutation implements a many-wise many-to-many relationship.

A permutation can also be seen as subordinate to a missing combination, and could theoretically always be avoided by implementing the appropriate combination and subordinate entities instead.

Derive the Correct PK According to the Entity Type

Independent

The PK for an independent entity should be a single key field which uniquely identifies each record in the table. Ideally, this field should be a serial number assigned by the program, but this is not mandatory. As examples, Customers have Customer Code as the PK, Invoices have Invoice Number - here we get our serial number.

Subordinate

The PK for a subordinate entity should be the PK of its parent table and one further key field which qualifies (i.e. uniquely distinguishes) each occurrence of child record for the same parent. Since the parent's PK is part of the child PK, it does not matter that the qualifier value can be repeated. The qualifier has no meaning by itself, but only when attached to (qualifying) the parent PK value in identifying the particular child record.

For Invoice Lines, the PK should be Invoice Number and Line Number. Line number should be wide enough to cater for the maximum number of lines allowed on any one invoice - ask the user.

Combination

The PK of a combination entity is the combination of the PKs of the two (or more) tables being related via this table. In theory, it does not matter in which order these keys are specified; you may decide which order seems more "natural".

Permutation

The PK of a permutation entity is formed by the combination of the PKs of the two (or more) tables being related, and one further key field to qualify each occurrence of the set.

Permutations should be avoided like the plague: they are very awkward beasts. You should always prefer the "simpler" entity type over the more complex. The entity types have been defined in simple-to-complex sequence, i.e. Independent is the simplest, Permutation is the most complex. At the end of the day, you must correctly understand and implement the reality of the business situation. By correctly identifying entity types in this way, you have encapsulated a major part of the application business rules. They will no longer be an issue for you or your client.

Note

For all entity types except combinations, you introduce precisely one new key field per entity. For combinations, you add no new key field, of course.

Add All Non-key Attributes to Each Table

You can now take the collected list of attributes garnered during the interview procedure and assign each to its correct box, using the rule that each attribute so assigned must be an attribute of the PK of the box you are assigning it to. Stated as Codd's Law:

"Every non-key field must be an attribute of the key,�the whole key, and nothing but the key."

If you find an attribute that doesn't have a home, draw the box it belongs in, assign the correct PK, and work the whole thing backwards. When this happens, by the way, it is often due to the user trying to "protect" you from the more complicated bits -"I wasn't going to tell you about that until later." Regard such events as a warning bell - explain to the user that you are all grown-up now, and please will he tell you everything at once. You really have to know if you are going to build the system for him.

Drawing The Diagram in Access

The natural evolution of the right database for a particular application involves deriving the required tables and record layouts from the ER diagram, and revising the diagram as new attributes are discovered which do not yet have their proper home: a circular and iterative process. This phase is best done on a white board and scraps of paper in any case, at least until we get wall-sized touch-sensitive computer monitors. You don't need to go near your computer until the diagram and record layouts have settled down. Then it is a simple matter to key the tables and record layouts into Access, and use Edit Relationships to recreate the ER diagram. And please draw the diagram in Access so that all 1:N relationships point from left to right: this makes the diagram much clearer, and means that you can use it as a "roadmap" into the generated application. Interform Navigation and Subform Selection are derived directly from the 1:N relationships; you will see this much more clearly if you have tidied up the diagram.

A Worked Example

"We are going to design a database to hold information about our own clients and the applications we have written for them, or sold to them. We will call this CAPO, for Client Application Package Organiser."

The scope and goals statement above mentioned two things: Client and Application. Each of these is a noun, and thus eligible to be entities in the database. Let's draw the boxes:

�

Figure 4 - Drawing Entities as Boxes

Taking these in turn, let's see if we can determine the correct entity types. Client is "independent" of anything else, and so is Application.

Let us now consider what the relationship is between these two entities, if any. This depends on precise interpretation of spoken (or written) requirements, and we must pay meticulous attention to the contextual semantics - for example, just what do we mean by an "application?"

Is "Accounts Receivable" an application, or is the AR system installed at each client site regarded as a different application? Can the same application be installed more than once at a particular client site?

Before we answer these questions, have you noticed that another entity is trying to get into the act here? The client "site" seems to be another candidate entity. This is the kind of thing you need to be sensitive to at this stage of the process.

Let's deal with the relationship between Client and Site before coming back to Application. It is often easier to tackle what seems likely to prove simple before trying to resolve the apparently complex.

"Each Client can have many sites, but each site belongs to one and only one client." This is a good example of a one-to-many relationship, and illustrates the precision and clarity of expression we employ when "reading" the diagram:

�

Figure 5 - Adding a One-to-Many Relationship

What entity type is Site? Reading the definitions above should lead you to the "subordinate" entity type: you cannot have a site without a client. Think about it. If you did, who would pay you?

Now let's try and relate Application to the others: "we would like to install the same application at many client sites. We also hope to install more than one application at some of these sites." That describes a many-to-many relationship between Site and Application:

�

Figure 6 - A Many-to-Many Relationship

Decomposing the N:N results in the following picture:

�

Figure 7 - Resolving The Many-to-Many Relationship

Note that entities can arise in one of two ways. Either we draw them because they were named in the specification (as nouns), or as a result of resolving a N:N, as in this case. When we create a new entity in this way, we have to find a suitable name for it. This can often be based on the verb used to describe the N:N. Thus, from the statement "we can install the application at many sites" we get the name "Installation."

Now we need to determine the correct type for the new entity. Always get the user to do this. Use the non-technical statement for each entity type to help decide which one describes it correctly. What we are concerned with here is the most effective way of uniquely identifying each record of this type. How do we want to identify each Installation?

Is an Installation independent of any other entity?

Can an Installation exist without being associated with a Client? Site? Application?

In this case, there cannot be an Installation until we can specify the Client, Site and Application. But since Site is subordinate to Client, that means that Installation is a Combination entity type, identified by (Client) Site and Application. We do not want to allow more than one record for the same combination of site and application.

But what if we also sell multiple copies of packages, and need to keep track of each individual copy (licence number) at each site? The answer is that we need another entity. The entity type for this could be Subordinate or Permutation. We may even find that we need separate entities for Application and Package. This will depend on what attributes we want to keep in each - how far our requirements differ in respect of each of these.

�

 Figure 8 - Adding More Entities

We might decide that Licence should be subordinate to Package: the best unique identifier looks like Package ID and licence serial number. We could also consider making Licence a permutation, identified by Client Site, Application and Copy (serial number).

The only objection to the subordinate identification is that one of the key elements has an externally assigned value - we do not issue licence numbers, and thus have no control over their length and data type (up to 15 mixed alpha-numeric characters?) nor even over their uniqueness and unchangeability. It is always safer to base PKs on internally assigned values.

What if we make Licence subordinate to Package, but substitute our own Copy serial number for the software manufacturer's licence number? It seems that the Client Site is not an essential part of the identifier. Come to think of it, we sometimes buy copies of packages for stock, and later sell them. And the client is quite free to move the copy of the package to another site. For both of these reasons, we should definitely not make Client/Site part of the PK of Licence.

The above discussion is trying to emulate the kind of mental acrobatics you have to be prepared to undertake when designing the database, and particularly when typing the entities.

Note that the diagram does not help us distinguish the entity types: we need to add an indicator for this inside each box:

�

Figure 9 - Labelling The Entity Types

We indicate the entity type by the initial letter (I)ndependent, (S)ubordinate, (C)ombination, and (P)ermutation. If we make the arrowhead on the parent relationship solid, and the other (foreign key) relationship arrowheads outline, then we can determine the parent of a subordinate or permutation entity unambiguously.

Note that entities with no arrows pointing into them (that are not at the many-end of any 1:N relationships) must be Independent.

The converse is not necessarily true however: a box at the many-end of one or more arrows may still be independent. If we were to add Invoices to our database, we would see that although there is a 1:N between Client and Invoice, Invoice identification (Invoice number) is actually independent of Client.

Entity�
Type�
Primary Key�
Foreign Keys�
�
Client�
Independent�
Client ID�
�
�
Site�
Subordinate�
Client ID, Site No�
�
�
Application�
Independent�
Application ID�
�
�
Package�
Independent�
Package ID�
�
�
Installation�
Combination�
Client ID, Site No, Application ID�
�
�
Licence�
Subordinate�
Package ID, Copy No�
Client ID, Site No�
�
Let us list each entity identified so far, together with its entity type, PK, and any foreign keys.

Now we are ready to switch on the computer, fire up Windows and Access, and start defining the tables and use Edit Relationships to recreate the ER diagram. And that is all MiA needs to build the application.

Mustang in Access		4 - Designing The Database

(Copyright E R Westwood 1997 All rights reserved		Page 4.�PAGE�14�

Mustang in Access	4 - Designing The Database

(Copyright E R Westwood 1997 All rights reserved		Page 4.�PAGE�1�

